Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.088
Filtrar
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 568-576, jul. 2024. ilus
Artículo en Español | LILACS | ID: biblio-1538065

RESUMEN

This study aimed to determine the repellent and insecticidal activity of four essential oils (EOs) from plants collected in the Chocó rain forest, Colombia, against T. castaneum . Conventional hydrodistillation was used to obtain the EOs. The repellent and insecticidal activities were evaluated by the preference area and gas dispersion methods, espectively. Statistical differences (p<0.05) were determined by applying a student's t-test. EOs of Siparuna guianensis, S. conica, Piper marginatum, and Nectandra acutifolia showed excellent repellent properties as the main findings, highlighting S. conicaEO with 84% repellency (1-hµL/cm2), while P. marginatum showed to be bioactive to the dose of 500 µL/mL (72 h), inducing mortality of 100% of the exposed population. In conclusion, the results evidenced the repellent properties of the EOs evaluated against T. castaneum , which allows us to conclude that these plant species are potential natural sources producing bio-repellents that contribute to the integrated control of T. castaneum.


Se evaluaron cuatro aceites esenciales (AEs) de plantas recolectadas en la selva pluvial del Chocó, Colombia, para determinar su actividad repelente e insecticida contra T. castaneum. Los AEs fueron obtenidos por hidrodestilación convencional. Las actividades repelentes e insecticidas se evaluaron por los métodos de área de preferencia y dispersión de gas, respectivamente. Las diferencias significativas (p<0,05) fueron determinadas aplicando una prueba t de student. Los AEs de Siparuna guianensis, S. conica, Piper marginatum y Nectandra acutifolia mostraron excelentes propiedades repelentes, destacando el AE de S. conicacon un 84% de repelencia (1µL/cm2), mientras que el AE de P. marginatummostró ser bioactivo a la dosis de 500 µL/mL (72 h) al inducir la mortalidad del 100% de la población expuesta. Se concluye que estas especies de plantas son fuentes naturales potencialmente viables para la producción de biorepelentes que contribuyan en el control integrado de T. castaneum.


Asunto(s)
Tribolium/efectos de los fármacos , Aceites Volátiles/farmacología , Insecticidas/farmacología , Colombia , Repelentes de Insectos/farmacología
2.
PLoS One ; 19(5): e0301816, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743802

RESUMEN

The yeast-encapsulated orange oil (YEOO) is a novel larvicide under development against vector mosquitoes. Despite its efficiency against Aedes aegypti (L.) in small scale experiments, its applicability in vector control can be influenced by other effects on mosquito behaviour or physiology. For this reason, the impact of YEOO particles in mosquito oviposition was evaluated in laboratory and semi-field conditions. Oviposition assays with one gravid Aedes aegypti female were carried under laboratory and semi-field conditions with natural light and temperature fluctuation. For all ovitraps, the number of eggs was manually counted in the wooden paddle and in the solution of each ovitrap. The proportion of eggs between substrates (wooden paddle and solution) varied between conditions, with females in laboratory presenting a lower preference to lay eggs in paddles when compared with studies in semi-field. This behaviour shifts in laboratory can create challenges to extrapolate results from laboratory to the field. Here, studies in both conditions indicate a similar impact of YEOO particles in Aedes aegypti oviposition. The potential treatment concentration of YEOO particles presents a strong repellent/deterrent effect (-0.559 > OAI > -0.760) within the initial 72h of application when compared with water, and weak repellent/deterrent signal (OAI = -0.220) when compared against inactivated yeast. Control ovitraps with water were more positive for egg presence than treated ovitraps, while ovitraps with YEOO particles and inactivated yeast present similar number of positive ovitraps. It is possible that the repellent/deterrent action is partially driven by the delivery system, since most times Citrus sinensis EO oviposition repellent/deterrent signal is weak, and it seem influenced by solvent/delivery used. However, it is unclear how the yeast wall that protect/surrounds the orange oil will negatively affect oviposition since live yeast are normally consider an attractant for mosquito oviposition.


Asunto(s)
Aedes , Control de Mosquitos , Oviposición , Aceites de Plantas , Aedes/fisiología , Aedes/efectos de los fármacos , Animales , Oviposición/efectos de los fármacos , Femenino , Aceites de Plantas/farmacología , Control de Mosquitos/métodos , Mosquitos Vectores/fisiología , Mosquitos Vectores/efectos de los fármacos , Saccharomyces cerevisiae/fisiología , Repelentes de Insectos/farmacología
3.
Parasit Vectors ; 17(1): 202, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711138

RESUMEN

BACKGROUND: The Lone Star tick, Amblyomma americanum is important to human health because of a variety of pathogenic organisms transmitted to humans during feeding events, which underscores the need to identify novel approaches to prevent tick bites. Thus, the goal of this study was to test natural and synthetic molecules for repellent activity against ticks in spatial, contact and human fingertip bioassays. METHODS: The efficacy of essential oils and naturally derived compounds as repellents to Am. americanum nymphs was compared in three different bioassays: contact, spatial and fingertip repellent bioassays. RESULTS: Concentration response curves after contact exposure to 1R-trans-chrysanthemic acid (TCA) indicated a 5.6 µg/cm2 concentration required to repel 50% of ticks (RC50), which was five- and sevenfold more active than DEET and nootkatone, respectively. For contact repellency, the rank order of repellency at 50 µg/cm2 for natural oils was clove > geranium > oregano > cedarwood > thyme > amyris > patchouli > citronella > juniper berry > peppermint > cassia. For spatial bioassays, TCA was approximately twofold more active than DEET and nootkatone at 50 µg/cm2 but was not significantly different at 10 µg/cm2. In spatial assays, thyme and cassia were the most active compounds tested with 100% and 80% ticks repelled within 15 min of exposure respectively and was approximately twofold more effective than DEET at the same concentration. To translate these non-host assays to efficacy when used on the human host, we quantified repellency using a finger-climbing assay. TCA, nootkatone and DEET were equally effective in the fingertip assay, and patchouli oil was the only natural oil that significantly repelled ticks. CONCLUSIONS: The differences in repellent potency based on the assay type suggests that the ability to discover active tick repellents suitable for development may be more complicated than with other arthropod species; furthermore, the field delivery mechanism must be considered early in development to ensure translation to field efficacy. TCA, which is naturally derived, is a promising candidate for a tick repellent that has comparable repellency to commercialized tick repellents.


Asunto(s)
Amblyomma , Aceites Volátiles , Animales , Aceites Volátiles/farmacología , Aceites Volátiles/química , Amblyomma/efectos de los fármacos , Repelentes de Insectos/farmacología , Humanos , Aceites de Plantas/farmacología , Aceites de Plantas/química , Ninfa/efectos de los fármacos , Bioensayo , DEET/farmacología
4.
J Oleo Sci ; 73(5): 761-772, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38692898

RESUMEN

Volatile secondary metabolites of plants interact with environments heavily. In this work, characteristic components of Michelia yunnanensis essential oils (EOs) were isolated, purified and identified by column chromatography, GC-MS and NMR. Leaves of M. yunnanensis were collected monthly and extracted for EOs to investigate chemical and insecticidal activity variations as well as potential influencing environments. Different organs were employed to reveal distribution strategies of characteristic components. Results of insecticidal activities showed that all EOs samples exerted stronger contact activity to Lasioderma serricorne, but repellent effect was more efficient on Tribolium castaneum. One oxygenated sesquiterpene was isolated from EOs, basically it could be confirmed as (+)-cyclocolorenone (1). It exerted contact toxicity to L. serricorne (LD 50 = 28.8 µg/adult). Chemical analysis showed that M. yunnanensis leaves in reproductive period would produce and accumulate more 1 than in vegetative period. Moreover, reproductive organs (flowers and fruits) contained more 1 than vegetative organs (leaves and twigs). Partial correlation analysis indicated that temperature-related elements positively correlated with the relative content of 1.


Asunto(s)
Insecticidas , Aceites Volátiles , Hojas de la Planta , Tribolium , Animales , Insecticidas/aislamiento & purificación , Insecticidas/análisis , Hojas de la Planta/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Aceites Volátiles/aislamiento & purificación , Tribolium/efectos de los fármacos , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/análisis , Repelentes de Insectos/análisis , Repelentes de Insectos/aislamiento & purificación , Repelentes de Insectos/farmacología , Temperatura
5.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731415

RESUMEN

Investigations have shown that storage bugs seriously harm grains during storage. In the interim, essential oils (EOs) have been proven to be a good botanical pesticide. The anti-Lasioderma serricorne properties of Elsholtzia ciliata essential oil, which was obtained by steam distillation, were evaluated using DL-limonene, carvone, and their two optical isomer components using contact, repelling, and fumigation techniques. Simultaneously, the fumigation, contact, and repellent activities of carvone and its two optical isomers mixed with DL-limonene against L. serruricorne were evaluated. The results showed that E. ciliata, its main components (R-carvone, DL-limonene), and S-carvone exhibited both fumigations (LC50 = 14.47, 4.42, 20.9 and 3.78 mg/L) and contact (LD50 = 7.31, 4.03, 28.62 and 5.63 µg/adult) activity against L.serricorne. A binary mixture (1:1) of R-carvone and DL-limonene displayed an obvious synergistic effect. A binary mixture (1:1) of carvone and its two optical isomers exhibited an obvious synergistic effect, too. Furthermore, the repellent activity of the EO, carvone, and its two optical isomers, DL-limonene, and a combination of them varied. To stop insect damage during storage, E. ciliata and its components can be utilized as bio-insecticides.


Asunto(s)
Insecticidas , Lamiaceae , Aceites Volátiles , Aceites Volátiles/química , Aceites Volátiles/farmacología , Lamiaceae/química , Animales , Insecticidas/química , Insecticidas/farmacología , Limoneno/química , Limoneno/farmacología , Repelentes de Insectos/química , Repelentes de Insectos/farmacología , Monoterpenos Ciclohexánicos/química , Monoterpenos Ciclohexánicos/farmacología , Sinergismo Farmacológico , Fumigación
6.
Molecules ; 29(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675573

RESUMEN

The repellent capacity against Sitophilus zeamais and the in vitro inhibition on AChE of 11 essential oils, isolated from six plants of the northern region of Colombia, were assessed using a modified tunnel-type device and the Ellman colorimetric method, respectively. The results were as follows: (i) the degree of repellency (DR) of the EOs against S. zeamais was 20-68% (2 h) and 28-74% (4 h); (ii) the IC50 values on AChE were 5-36 µg/mL; likewise, the %inh. on AChE (1 µg/cm3 per EO) did not show any effect in 91% of the EO tested; (iii) six EOs (Bursera graveolens-bark, B. graveolens-leaves, B. simaruba-bark, Peperomia pellucida-leaves, Piper holtonii (1b*)-leaves, and P. reticulatum-leaves) exhibited a DR (53-74%) ≥ C+ (chlorpyrifos-61%), while all EOs were less active (8-60-fold) on AChE compared to chlorpyrifos (IC50 of 0.59 µg/mL). Based on the ANOVA/linear regression and multivariate analysis of data, some differences/similarities could be established, as well as identifying the most active EOs (five: B. simaruba-bark, Pep. Pellucida-leaves, P. holtonii (1b*)-leaves, B. graveolens-bark, and B. graveolens-leaves). Finally, these EOs were constituted by spathulenol (24%)/ß-selinene (18%)/caryophyllene oxide (10%)-B. simaruba; carotol (44%)/dillapiole (21%)-Pep. pellucida; dillapiole (81% confirmed by 1H-/13C-NMR)-P. holtonii; mint furanone derivative (14%)/mint furanone (14%)-B. graveolens-bark; limonene (17%)/carvone (10%)-B. graveolens-leaves.


Asunto(s)
Inhibidores de la Colinesterasa , Repelentes de Insectos , Aceites Volátiles , Animales , Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Colombia , Repelentes de Insectos/farmacología , Repelentes de Insectos/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Piper/química , Aceites de Plantas/farmacología , Aceites de Plantas/química , Gorgojos/enzimología , Gorgojos/efectos de los fármacos , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/farmacología
7.
Pestic Biochem Physiol ; 201: 105907, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685228

RESUMEN

The use of essential oils (EOs) in the development of alternative management methods for bruchid control under storage conditions aroused great interest because they have proven to be effective, less toxic, and less persistent in the ecosystem than synthetic pesticides. In this sense, leaves of Lippia turbinata (Griseb.) Moldenke EO were studied in the present work. The monoterpene limonene and the monoterpenoid eucalyptol were its main constituents. EO showed a potent insecticidal activity, both in contact and fumigant conditions, against Rhipibruchus picturatus (F.) which is one of the main pests of Prosopis alba pods in stored conditions. Moreover, the EO produces repellency in these insects. Additionally, the toxicity mechanism of action was studied. In this regard, the EO inhibits the acetylcholinesterase enzyme in in vitro assays, alters the activity of the antioxidant enzymes superoxide dismutase and catalase, and produces an increase in the lipid peroxidation reactions. This is the first report of the use of the L. turbinata EO against R. picturatus insect pest. The data obtained demonstrate its potential for developing more efficient and natural storage pest control strategies.


Asunto(s)
Repelentes de Insectos , Insecticidas , Lippia , Aceites Volátiles , Animales , Aceites Volátiles/farmacología , Aceites Volátiles/química , Lippia/química , Insecticidas/farmacología , Insecticidas/química , Insecticidas/toxicidad , Repelentes de Insectos/farmacología , Repelentes de Insectos/química , Escarabajos/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Acetilcolinesterasa/metabolismo , Catalasa/metabolismo , Hojas de la Planta/química
8.
Pestic Biochem Physiol ; 201: 105856, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685238

RESUMEN

Plutella xylostella is an important pest showing resistance to various chemical pesticides, development of botanical pesticides is an effective strategy to resolve above problem and decrease utilization of chemical pesticides. Previous study showed that 2,3-dimethyl-6-(1-hydroxy)-pyrazine has significant repellent activity to P. xylostella adult which mainly effect to the olfactory system, however the molecular targets and mechanism are still unclear. Based on the RNA-Seq and RT-qPCR data, eight ORs (Odorant receptor) in P. xylostella were selected as candidate targets response to repellent activity of 2,3-dimethyl-6-(1-hydroxy)-pyrazine. Here, most of the ORs in P. xylostella were clustered into three branches, which showed similar functions such as recognition, feeding, and oviposition. PxylOR29, PxylOR31, and PxylOR46 were identified as the potential molecular targets based on the results of repellent activity and EAG response tests to the adults which have been injected with dsRNA, respectively. Additionally, the three ORs were higher expressed in antenna of P. xylostella, followed by those in the head segment. Furthermore, it was found that the bindings between these three ORs and 2,3-dimethyl-6-(1-hydroxy)-pyrazine mainly depend on the hydrophobic effect of active cavities, and the binding to PxylOR31 was more stabler and easier with an energy of -16.34 kcal/mol, together with the π-π T-shaped interaction at PHE195 site. These findings pave the way for the complete understanding of pyrazine repellent mechanisms.


Asunto(s)
Repelentes de Insectos , Mariposas Nocturnas , Pirazinas , Receptores Odorantes , Animales , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Pirazinas/farmacología , Repelentes de Insectos/farmacología , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética
9.
J Vector Borne Dis ; 61(1): 90-100, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38648410

RESUMEN

BACKGROUND OBJECTIVES: Widespread pyrethroid resistance and plastic-feeding behaviour of most malaria vectors across Africa threaten the efficacy of current insecticide-based vector control interventions like Insecticide-Treated Nets (ITNs) and Indoor Residual Spraying (IRS). This study examined the larvicidal activity ofMorinda citrifolia against Anopheles gambiae larvae and the repellent properties of Morinda citrifolia (Noni), Moringa oleifera (Moringa), and Ocimum basilicum (Basil) as complementary vector control tools against Anopheles gambiae sensu lato (s.l.). METHODS: Noni, Basil, and Moringa oil extracts were obtained with the extraction techniques; Soxhlet, steam distillation and maceration respectively, using hexane and ethanol. The effectiveness of the extracts was assessed using the WHO standard larval susceptibility bioassay and guidelines for repellent efficacy. Following bioassays, effective doses (ED) and lethal concentrations (LC) were determined. Gas Chromatography-Mass Spectroscopy analysis was performed to identify the bioactive chemical components of the extracts of Moringa oleifera and Ocimum basilicum. RESULTS: Emulsified Morinda citrifolia seed oil had LC50=68.3, LC90=130.9 and LC99.9=222.5, and ED99. 9=308.3%v/v, the ethanolic extract of Moringa oleifera leaves had ED99.9= 1.25g/ml, and essential oil of Ocimum basilicum leaves had ED99.9=0.28g/ml against Anopheles gambiae. INTERPRETATION CONCLUSION: The results obtained indicated that seed oil of Morinda citrifolia, essential oil of Ocimum basilicum, and crude extract of Moringa oleifera have repellent activity against An. gambiae s.l. The complete protection time (CPT) of Morinda citrifolia, Moringa oleifera, and Ocimum basilicum was 120 min, 72 min and 84 min at ED99.9 respectively. Morinda citrifolia oil exhibited larvicidal effects against the larvae of An. gambiae s.l. The results provide valuable information for the use of the plants as biocides.


Asunto(s)
Anopheles , Repelentes de Insectos , Insecticidas , Larva , Control de Mosquitos , Ocimum basilicum , Extractos Vegetales , Animales , Anopheles/efectos de los fármacos , Larva/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Repelentes de Insectos/farmacología , Ocimum basilicum/química , Insecticidas/farmacología , Control de Mosquitos/métodos , Moringa oleifera/química , Mosquitos Vectores/efectos de los fármacos , Morinda/química , Cromatografía de Gases y Espectrometría de Masas , Bioensayo , Aceites Volátiles/farmacología , Aceites Volátiles/química , Aceites de Plantas/farmacología , Aceites de Plantas/química
10.
J Vector Borne Dis ; 61(1): 107-116, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38648412

RESUMEN

BACKGROUND OBJECTIVES: Mosquitoes alone transmit diseases to around 700 million individuals annually, killing approximately 0.7 million people every year worldwide. Considering the potential health risks linked with synthetic repellents, it has become vital to identify eco-friendly, natural repellents for mosquito control as well as to understand the underlying mechanism for mosquito repellent activity. To address this, objectives were set to extract essential oils from Citrus macroptera peel and Homalomena aromatica (Spreng.) Schott. rhizomes, evaluate their mosquito repellent activity against Aedes aegypti, and further explore their mosquito odorant receptor inhibition potential. METHODS: The oils were extracted using Clevenger's apparatus, and properties like specific gravity, refractive index, and boiling point were evaluated and characterised using Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectroscopy (GC-MS). Aedes aegypti mosquito eggs collected from the Indian Council of Medical Research (ICMR), Dibrugarh, were reared in the Department of Pharmaceutical Sciences, Research Laboratory, to obtain adult Aedes aegypti mosquitoes for the mosquito repellent activity evaluation of the essential oils using the Human Bait technique'. Molecular docking studies were performed for the oil components against mosquito odorant binding proteins. Further, toxicity studies of these two oils were evaluated against human dermal fibroblast adult (HDFa) cells. RESULTS: The results revealed the presence of limonene (86.76%) and linalool (52.35%), respectively, in Citrus macroptera and Homalomena aromatica oils. It was found that the combination of the oils in a ratio of 1:1 showed mosquito repellent activity for up to 6.33 ± 0.23 h. Molecular docking studies showed the presence of major oil components having mosquito odorant receptor blocking potential comparable to N, N-diethyl-meta-toluamide (DEET), indicating a rationale for extended mosquito repellent action. Further, both of these oils were found to be non-cytotoxic against HDFa cells after 24 h. INTERPRETATION CONCLUSION: The encouraging mosquito repellent activity of these two oils as compared to synthetic mosquito repellent DEET might pave the way for the development of novel herbal mosquito repellent formulations containing these essential oils.


Asunto(s)
Aedes , Citrus , Repelentes de Insectos , Simulación del Acoplamiento Molecular , Aceites Volátiles , Repelentes de Insectos/farmacología , Repelentes de Insectos/química , Repelentes de Insectos/aislamiento & purificación , Animales , Aedes/efectos de los fármacos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Citrus/química , Humanos , Cromatografía de Gases y Espectrometría de Masas , Espectroscopía Infrarroja por Transformada de Fourier , Receptores Odorantes/metabolismo , Receptores Odorantes/química , Femenino , Rizoma/química
11.
Chem Biodivers ; 21(5): e202400185, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513004

RESUMEN

The resin essential oil (REO) of the Tunisian Araucaria heterophylla trunk bark was investigated for its chemical composition. Then, it was evaluated for its insecticidal and allelopathic activities. The REO was obtained by hydrodistillation for 9 h (yield of 4.2 % w/w). Moreover, fractional hydrodistillation was carried out at 3-hour intervals, resulting in 3 fractions (R1-R3), to facilitate chemical identification and localization of the aforementioned biological activities. GC/MS analysis of the obtained samples allowed the identification of 25 compounds, representing between 91.2 and 96.3 % of their total constituents, which consisted predominantly of sesquiterpene hydrocarbons, oxygenated sesquiterpenes and diterpene hydrocarbons. α-Copaene (10.8 %), γ-muurolene (5.8 %), α-copaen-11-ol (7.8 %), spathulenol (10.5 %), 15-copaenol (8.2 %), ylangenal (10.3 %), dehydrosaussurea lactone (7.7 %), and sandaracopimaradiene (11.4 %) were identified as major compounds. The second part aimed to assess the impact of the A. heterophylla EO and its three fractions for their insecticidal and repellent activity against Tribolium castaneum (Herbst), a stored grain pest, of which a strong repellent activity was noted. In addition, the studied samples showed high phytotoxic effects against Lactuca sativa. The third fraction (R3) performed a total inhibitory potential on seed germination and seedling growth of the target plant. Furthermore, alongside this discovery, an estimation was conducted through molecular docking analysis. Wherein the main compounds of the studied samples were docked into the active pocket of protoporphyrinogen IX oxidase (PDB: 1SEZ), a key enzyme in chlorophyll biosynthesis. Thus, it is recommended to use the REO of A. heterophylla as a natural herbicide.


Asunto(s)
Araucaria , Insecticidas , Aceites Volátiles , Aceites Volátiles/farmacología , Aceites Volátiles/química , Aceites Volátiles/aislamiento & purificación , Túnez , Animales , Insecticidas/farmacología , Insecticidas/química , Insecticidas/aislamiento & purificación , Araucaria/efectos de los fármacos , Araucaria/química , Araucaria/metabolismo , Repelentes de Insectos/farmacología , Repelentes de Insectos/química , Repelentes de Insectos/aislamiento & purificación , Resinas de Plantas/química , Simulación del Acoplamiento Molecular , Cromatografía de Gases y Espectrometría de Masas
12.
PLoS One ; 19(3): e0299144, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512948

RESUMEN

Mosquitoes of the genera Aedes, Anopheles and Culex vector a wide range of pathogens seriously affecting humans and livestock on a global scale. Over-reliance on insecticides and repellents has driven research into alternative, naturally-derived compounds to fulfil the same objectives. Steam distilled extracts of four plants with strong, yet attractive, volatile profiles were initially assessed for repellency in a dual-port olfactometer using Aedes aegypti as the model species. Picea sitchensis was found to be the most repellent, proving comparable to leading products when applied at 100% (p = 1.000). Key components of conifer-derived volatile profiles were then screened via electroantennography before those components eliciting an electrophysiological response were assayed individually in the olfactometer; according to WHO protocol. The most promising 5 were selected for reductive analyses to produce an optimised semiochemical blend. This combination, and a further two variations of the blend, were then progressed to a multi-species analysis using the BG-test whereby bite-attempt frequency on hands was assessed under different repellent treatments; assays were compared between Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus. Efficacy was found against all three species, although it was found that Ae. aegypti was the most susceptible to the repellent, with An. gambiae being the least. Here, a novel, naturally-derived blend is presented with weak spatial repellency, as confirmed in laboratory assays. Further work will be required to assess the full extent of the potential of the products, both in terms of field application and species screening; however, the success of the products developed demonstrate that plant metabolites have great capacity for use in the repellent sector; both to improve upon known compounds and to reduce the usage of toxic products currently on the market.


Asunto(s)
Aedes , Anopheles , Culex , Culicidae , Repelentes de Insectos , Insecticidas , Humanos , Animales , Mosquitos Vectores , Extractos Vegetales/farmacología , Repelentes de Insectos/farmacología , Insecticidas/farmacología
13.
PeerJ ; 12: e17038, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529314

RESUMEN

The mosquito Aedes aegypti, known to transmit important arboviral diseases, including dengue, chikungunya, Zika and yellow fever. Given the importance of this disease vector, a number of control programs have been proposed involving the use of the sterile insect technique (SIT). However, the success of this technique hinges on having a good understanding of the biology and behavior of the male mosquito. Behavioral responses of Ae. aegypti male populations developed for SIT technology were tested under laboratory conditions against chemical and natural irritants and repellents using an excito-repellency (ER) chamber. The results showed that there were no significant behavioral escape responses in any of the radiation-sterilized male Ae. aegypti test populations when exposed to citronella, DEET, transfluthrin, and deltamethrin, suggesting that SIT did not suppress the expected irritancy and repellency (avoidance) behaviors. The type of information reported in the current study is vital in defining the effects of SIT on vector behavior and understanding how such behavior may influence the success of SIT technology with regard to other vector control interventions.


Asunto(s)
Aedes , Infertilidad Masculina , Repelentes de Insectos , Infección por el Virus Zika , Virus Zika , Masculino , Humanos , Animales , Irritantes/farmacología , Mosquitos Vectores/fisiología , Repelentes de Insectos/farmacología , Infertilidad Masculina/prevención & control
14.
Exp Appl Acarol ; 92(3): 555-565, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38468022

RESUMEN

The main way to avoid contact with ticks and consequently tick-borne disease is the use of synthetic repellents. The search of new repellent compounds to increase the possibilities of use in strategies controls are necessary. The present study evaluated the repellent activity of two natural terpenes carvacrol and thymol in each one two different formulation (encapsulated and nonencapsulated with yeast cell wall) against the ticks Amblyomma sculptum and Rhipicephalus sanguineus sensu lato nymphs. Nymphs of A. sculptum and R. sanguineus s.l. of a single generation were used. The vertical filter paper repellency assay were performed with different concentration of both terpenes encapsulated and nonencapsulated in yeast cell wall. The repellent concentration 50% (RC50) were calculated to each compound formulation. Both carvacrol and thymol (encapsulated and nonencapsulated), had a repellent activity against A. sculptum and R. sanguineus s.l nymphs. Amblyomma sculptum was more sensitive to nonencapsulated carvacrol (RC50 values: 0.0032 to 0.0082 mg/cm2 after 1 and 15 min) (P < 0.05), while R. sanguineus s.l. was more sensitive to encapsulated carvacrol (RC50 values: 0.00008 to 0.0035 mg/cm2 after 1 and 15 min) (P < 0.05). Among tick species, R. sanguineus s.l. was more sensitive for most compounds than A. sculptum (P < 0.05). Although with distinct repellent activities, carvacrol and thymol encapsulated can be a promising alternative to synthetic repellents against A. sculptum and R. sanguineus s.l.


Asunto(s)
Amblyomma , Cimenos , Ninfa , Rhipicephalus sanguineus , Timol , Cimenos/farmacología , Animales , Timol/farmacología , Ninfa/efectos de los fármacos , Ninfa/crecimiento & desarrollo , Rhipicephalus sanguineus/efectos de los fármacos , Pared Celular/efectos de los fármacos , Acaricidas/farmacología , Monoterpenos/farmacología , Repelentes de Insectos/farmacología , Saccharomyces cerevisiae/efectos de los fármacos
15.
Behav Processes ; 217: 105012, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38493970

RESUMEN

It is generally believed that termites can't learn and are not "intelligent". This study aimed to test whether termites could have any form of memory. A Y-shaped test device with one release chamber and two identical test chambers was designed and constructed by 3D printing. A colony of damp wood termites was harvested from the wild. Worker termites were randomly selected for experiment. Repellent odors that could mimic the alarm pheromone for termites were first identified. Among all substances tested, a tea tree oil and lemon juice were found to contain repellent odors for the tested termites, as they significantly reduced the time that termites spent in the chamber treated with these substances. As control, a trail pheromone was found to be attractive. Subsequently, a second cohort of termites were operant conditioned by punishment using both tea tree oil and lemon juice, and then tested for their ability to remember the path that could lead to the repellant odors. The test device was thoroughly cleaned between trials. It was found that conditioned termites displayed a reduced tendency to choose the path that led to expectant punishment as compared with naïve termites. Thus, it is concluded that damp wood termites are capable of learning and forming "fear memory", indicative of "intelligence" in termites. This result challenges established presumption about termites' intelligence.


Asunto(s)
Isópteros , Odorantes , Isópteros/fisiología , Animales , Condicionamiento Operante/fisiología , Feromonas/farmacología , Memoria/fisiología , Aprendizaje/fisiología , Aceite de Árbol de Té/farmacología , Citrus , Repelentes de Insectos/farmacología , Conducta Animal/fisiología , Castigo
16.
Molecules ; 29(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542997

RESUMEN

The current study aimed to evaluate the presence of chemical variations in essential oils (EOs) extracted from Artemisia scoparia growing at different altitudes and to reveal their antibacterial, mosquito larvicidal, and repellent activity. The gas chromatographic-mass spectrometric analysis of A. scoparia EOs revealed that the major compounds were capillene (9.6-31.8%), methyleugenol (0.2-26.6%), ß-myrcene (1.9-21.4%), γ-terpinene (1.5-19.4%), trans-ß-caryophyllene (0.8-12.4%), and eugenol (0.1-9.1%). The EO of A. scoparia collected from the city of Attock at low elevation was the most active against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa bacteria (minimum inhibitory concentration of 156-1250 µg/mL) and showed the best mosquito larvicidal activity (LC50, 55.3 mg/L). The EOs of A. scoparia collected from the high-altitude areas of Abbottabad and Swat were the most repellent for females of Ae. aegypti and exhibited repellency for 120 min and 165 min, respectively. The results of the study reveal that different climatic conditions and altitudes have significant effects on the chemical compositions and the biological activity of essential oils extracted from the same species.


Asunto(s)
Aedes , Artemisia , Repelentes de Insectos , Insecticidas , Aceites Volátiles , Sesquiterpenos Policíclicos , Scoparia , Femenino , Animales , Aceites Volátiles/farmacología , Aceites Volátiles/química , Repelentes de Insectos/farmacología , Repelentes de Insectos/química , Altitud , Insecticidas/química , Antibacterianos/farmacología , Larva , Aceites de Plantas/química
17.
Sci Rep ; 14(1): 5422, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443480

RESUMEN

Developing a safe and potent repellent of mosquitoes applicable to human skins is an effective measure against the spread of mosquito-borne diseases. Recently, we have identified that hydrophobic solutions such as low viscosity polydimethylsiloxane (L-PDMS) spread on a human skin prevent mosquitoes from staying on and biting it. This is likely due to the ability of L-PDMS in wetting mosquito legs and exerting a capillary force from which the mosquitoes attempt to escape. Here we show three additional functions of L-PDMS that can contribute to repel Aedes albopictus, by combining physicochemical analysis and behavioral assays in both an arm cage and a virtual flight arena. First, L-PDMS, when mixed with topical repellents and applied on a human skin, enhances the effect of topical repellents in reducing mosquito bites by efficiently transferring them to mosquito legs upon contact. Second, L-PDMS applied to mosquito tarsi compromises visual object tracking during flight, exerting an influence outlasting the contact. Finally, L-PDMS applied to mosquito tarsi acts as an aversive reinforcer in associative learning, making mosquitoes avoid the conditioned odor. These results uncover a multifaceted potential of L-PDMS in altering a sequence of mosquito behaviors from biting a human skin, visual object tracking following takeoff, to the response to an odor linked with L-PDMS.


Asunto(s)
Aedes , Repelentes de Insectos , Humanos , Animales , Repelentes de Insectos/farmacología , Articulación del Tobillo , Humectabilidad
18.
Pest Manag Sci ; 80(6): 2773-2784, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38298140

RESUMEN

BACKGROUND: Pheromones have unique advantages for pest control. Current aphid pheromone research focuses on alarm and sex pheromones. However, practical applications are limited so far, as (E)-ß-farnesene has only been investigated to a small extent as an alarm pheromone and only male aphids are targeted by sex pheromones. Previous literature reports electrophysiological responses and repellent behavior of asexual aphids to nepetalactone (1B), therefore our objective was to modify nepetalactone's structure to identify key fragments responsible for repellent effects, as guidance for subsequent modifications and further investigation. RESULTS: In this study, seven derivatives were designed and synthesized based on nepetalactol (1A) and nepetalactone (1B) as lead compounds. Free-choice tests, conducted using cowpea aphids (Aphis craccivora), revealed that the lactone moiety was crucial for the repellent activity, and the removal of the carbonyl group eliminated the repelling effect. Compound (±)1I, an analogue of nepetalactone (1B), demonstrated a significantly higher repellent value than nepetalactone (1B) at three different concentrations, and even at 0.1 mg/mL it maintained a considerable repellent effect (26.5%). Electrostatic potential and density functional theory calculations supported the importance of the carbonyl group for the repellent effects. CONCLUSION: The newly discovered para-pheromone (±)1I shows improved repellent effects and potential for development as a novel biological control agent. Based on our innovative findings, analogues with improved efficacy and properties can be designed and prepared. Our research contributes to understanding the effects of structural modifications on pheromone activity and properties, which is crucial for exploring novel pheromone-based products for crop protection. © 2024 Society of Chemical Industry.


Asunto(s)
Áfidos , Feromonas , Animales , Áfidos/efectos de los fármacos , Feromonas/farmacología , Masculino , Repelentes de Insectos/farmacología , Repelentes de Insectos/química , Pironas/farmacología , Pironas/química , Lactonas/farmacología , Lactonas/química , Monoterpenos Ciclopentánicos , Femenino , Norbornanos/química , Norbornanos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes
19.
Chem Biodivers ; 21(4): e202301711, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38372187

RESUMEN

Stored products are constantly infested by insects, so finding eco-friendly bioinsecticides for insect management is important. The work aimed to assess the insecticidal and repellent activity of essential oil (EO) from Hedychium glabrum S. Q. Tong, Hedychium coronarium Koen., and Hedychium yunnanense Gagnep. against Tribolium castaneum, Lasioderma serricorne, and Liposcelis bostrychophila. Results showed that 88 chemical components were identified in the extracted Hedychium EOs, indicating that they exhibited diversity in components. According to principal component analysis (PCA), the composition of the EO from the H. yunnanense stem and leaf (EOHYSL) was significantly different from other EOs due to the different organs and species. The biological activity also varied continuously with plant species and organs. Only the EO of H. yunnanense (EOHY) showed strong fumigant toxicity. While in the contact tests, EOHGR showed the strongest toxicity effect on L. bostrychophila, with a LC50 value of 71.76 µg/cm2, which was closest to the positive control (Pyrethrin). All EOs had remarkable repellent activities against the three target insects, and repellency increased with concentration. According to the results of the comprehensive score, EOHY had the highest potential, which ranged from 0.7999 to 0.8689. Thus, Hedychium EOs possess potential biorational traits to be biological insecticides.


Asunto(s)
Escarabajos , Repelentes de Insectos , Insecticidas , Aceites Volátiles , Tribolium , Zingiberaceae , Animales , Aceites Volátiles/toxicidad , Aceites Volátiles/química , Insectos , Insecticidas/química , Repelentes de Insectos/farmacología , Repelentes de Insectos/química
20.
Parasit Vectors ; 17(1): 50, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38303091

RESUMEN

BACKGROUND: The majority of vector-borne disease cases in the USA are caused by pathogens spread by ticks, most commonly the blacklegged tick, Ixodes scapularis. Personal protection against tick bites, including use of repellents, is the primary defense against tick-borne diseases. Tick repellents registered by the Environmental Protection Agency (EPA) are well documented to be safe as well as effective against ticks. Another group of tick repellent products, 25(b) exempt or minimum risk products, use alternative, mostly botanically derived, active ingredients. These are considered to pose minimal risk to human health and therefore are exempt from EPA registration; efficacy testing is not mandated for these products. METHODS: We used a finger bioassay to evaluate the repellency against I. scapularis nymphs for 11 formulated 25(b) exempt products together with two positive control DEET-based EPA registered products. Repellency was assessed hourly from 0.5 to 6.5 h after product application. RESULTS: The DEET-based products showed ≥ 97% repellency for all examined timepoints. By contrast, an average of 63% of ticks were repelled in the first 1.5 h after application across the 11 25(b) exempt products, and the average fell to 3% repelled between 2.5 and 6.5 h. Ten of the 11 25(b) exempt products showed statistically similar efficacy to DEET-based products at 30 min after application (repellency of 79-97%). However, only four 25(b) exempt products maintained a level of repellency similar to DEET-based products (> 72%) at the 1.5-h mark, and none of these products were effective in repelling ticks at the timepoints from 2.5 to 6.5 h after application. CONCLUSIONS: Neither the claims on the labels nor specific active ingredients and their concentrations appeared to predict the duration of efficacy we observed for the 25(b) exempt products. These products are not registered with the EPA, so the methods used to determine the application guidelines on their labels are unclear. Consumers should be aware that both the level of efficacy and the duration of repellency may differ among unregulated 25(b) exempt repellent products labeled for use against ticks. We encourage more research on these products and the 25(b) exempt active ingredients they contain to help determine and improve their efficacy as repellents under different conditions.


Asunto(s)
Repelentes de Insectos , Ixodes , Mordeduras de Garrapatas , Animales , Humanos , DEET/farmacología , Repelentes de Insectos/farmacología , Ninfa , Bioensayo/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA